The process of gas chromatography can vary
with the object analyzed and the identifier used, but the basic process is
still the same, which can be represented by a block diagram, as shown in the
following figure:
(1) Air source. High-pressure steel
cylinders are mostly used as the carrier gas storage, which is filled with
high-pressure high-purity gas (about 15MPa when full). Special attention should
be paid to safety during use. It is equipped with a pressure reducing valve to
decompress the high-pressure gas into a low-pressure gas, generally reduced to
about 0.3MPa, and the maximum should not exceed 0.5MPa. The pressure reducing
valve and the nozzle of the high-pressure cylinder must be closely matched to
avoid air leakage or accidents. The decompressed low-pressure carrier gas
enters the purification tube for purification to purify the carrier gas and
remove moisture. The purification tube can be made of metal, plastic,
plexiglass and other materials into a cylindrical shape, and can be filled with
purifying agents such as 5A molecular sieve, color-changing silica gel, and
activated carbon as required. After the decontamination agent has been used for
a period of time, the decontamination agent should be replaced or reactivated
and continue to be used. The purified carrier gas requires a stable flow rate.
A pressure-stabilizing valve can be used to stabilize the pre-column pressure,
and a pressure-stabilizing valve or a needle valve can also be used to
precisely adjust the flow rate. The determination of its flow rate is usually
indicated by a rotameter, and the real flow rate is corrected by a soap film
flowmeter connected to the column.
(2) Injection. The injector is the element
that passes the sample through the chromatographic column, and the vaporization
chamber is the device that instantaneously vaporizes the liquid or solid sample
into vapor. Common injection tools are quantitative valves or syringes. It is
injected from the injection port, and the silicone rubber gasket of the
injection port should be replaced in time to prevent air leakage.
(3) Chromatographic column. It can be said
to be the heart of the chromatograph, and its role is to separate the mixture
into single components. There are packed columns, hollow columns and capillary
columns. At present, the power system generally uses packed columns, which are
made of glass, stainless steel or copper, filled with stationary phase or
coated with stationary liquid, and the tube shape is mostly spiral or U-shaped.
If you can find an ideal chromatographic column according to the needs of
production or scientific research in your work, you can say that you have found
a new analytical method. A chromatograph can separate different substances to
meet the needs of production as long as the chromatographic column and its
operating conditions are changed. It's like having different shows on the same
stage.
(4) Identifier (detector). Its function is
to convert the concentration changes of various substances separated in the
chromatographic column into electrical signals (voltage or current signals) for
the recorder to record. Commonly used identifiers include thermal conductivity
cell identifiers, hydrogen flame ion identifiers, and electron capture
identifiers.
(5) The configuration part of the
temperature control system and the evaluator. This part is mostly composed of
electronic components, so it is also called the electronic part. The
chromatographic column and the identifier sometimes require a constant
temperature in the vaporization chamber (the higher the accuracy, the better),
and some departments also need to program the temperature, so the instrument
has a precise temperature control device. Generally, it is also equipped with a
blower motor and a thermostatic controller for strengthening convection, and a
temperature indication or display. The configuration part of the identifier
includes DC regulated power supply, amplifier (signal), ignition, polarized
power supply, etc.
(6) Recorder. It is an important auxiliary equipment, and its function is to automatically record the signal output by the identifier as a basis for qualitative and quantitative analysis. Generally, electronic potentiometers are commonly used. Nowadays, microcomputer-controlled data processors with printing are widely used, which can not only print out the qualitative and quantitative results of the analyzed components, but also determine whether there are faults and the nature of the faults and print them out, making the analysis results more accurate and faster. meet production needs.
Transformer oil performs important role in power transformers, it works as cooling and insulation material. Therefore, Dissolved Gas Analysis of transformer oil is necessary for predicting the condition of transformer oil. By analyzing the percentages of dissolved gasses contained in transformer oil, maintainence staff can obtain the useful data for their work.
More information about Transformer Oil DGA Test Kit, Transformer Oil Purifier, and other power transformer maintenance equipment, please don't hesitate to contact us.
PureTech Oil Filtration
web: www.cqpuretech.com
Tel:+8617815389416
Email: sales@cqpuretech.com
Name: PURETECH
Mobile:+86 17815389416
Tel:+86 17815389416
Whatsapp:+8617815389416
Email:sales@cqpuretech.com
Add:1 Xinmao Road, Beibei district, Chongqing, China